Calculate SSM parameters by row and add results as new columns
Source:R/ssm_analysis.R
ssm_score.Rd
Calculate the SSM parameters for each row of a data frame and add the results as additional columns. This can be useful when the SSM is being used for the description or visualization of individual data points rather than for statistical inference on groups of data points.
Usage
ssm_score(data, scales, angles = octants(), append = TRUE, ...)
Arguments
- data
Required. A data frame containing at least circumplex scales.
- scales
Required. The variable names or column numbers for the variables in
.data
that contain circumplex scales to be analyzed.- angles
Required. A numeric vector containing the angular displacement of each circumplex scale included in
scales
(in degrees).- append
Optional. A logical indicating whether to append the output to
data
or simply return the output (default = "TRUE").- ...
Optional. Additional parameters to pass to
ssm_parameters()
, such asprefix
andsuffix
.
Value
A data frame containing .data
plus six additional columns
containing the SSM parameters (calculated rowwise).
See also
Other ssm functions:
ssm_analyze()
,
ssm_parameters()
,
ssm_table()
Other analysis functions:
ssm_analyze()
,
ssm_parameters()
Examples
data("aw2009")
ssm_score(
aw2009,
scales = c("PA", "BC", "DE", "FG", "HI", "JK", "LM", "NO")
)
#> PA BC DE FG HI JK LM NO Elev Xval Yval
#> 1 -1.09 -1.04 -0.97 0.61 1.41 2.49 1.78 0.27 0.4325 1.2514177 -1.3091258
#> 2 1.13 -1.04 -0.97 -0.79 -0.56 0.79 1.78 1.52 0.2325 1.4193555 0.5073528
#> 3 0.91 -0.65 -0.80 -0.96 -0.23 -0.34 1.24 0.27 -0.0700 0.7822361 0.4476346
#> 4 0.47 -0.45 -0.29 0.26 1.57 1.36 1.60 0.48 0.6250 0.8313567 -0.5560749
#> 5 0.45 0.32 0.43 0.96 1.25 1.41 1.49 0.85 0.8950 0.4382412 -0.4121320
#> Ampl Disp Fit
#> 1 1.8110374 313.70892 0.9706769
#> 2 1.5073079 19.66958 0.9172710
#> 3 0.9012602 29.78035 0.7137698
#> 4 1.0001866 326.22237 0.8784837
#> 5 0.6015880 316.75861 0.9674101